4 research outputs found

    Beyond vanilla: improved autoencoder-based ensemble in-vehicle intrusion detection system.

    Get PDF
    Modern automobiles are equipped with a large number of electronic control units (ECUs) to provide safe driver assistance and comfortable services. The controller area network (CAN) provides near real-time data transmission between ECUs with adequate reliability for in-vehicle communication. However, the lack of security measures such as authentication and encryption makes the CAN bus vulnerable to cyberattacks, which affect the safety of passengers and the surrounding environment. Detecting attacks on the CAN bus, particularly masquerade attacks, presents significant challenges. It necessitates an intrusion detection system (IDS) that effectively utilizes both CAN ID and payload data to ensure thorough detection and protection against a wide range of attacks, all while operating within the constraints of limited computing resources. This paper introduces an ensemble IDS that combines a gated recurrent unit (GRU) network and a novel autoencoder (AE) model to identify cyberattacks on the CAN bus. AEs are expected to produce higher reconstruction errors for anomalous inputs, making them suitable for anomaly detection. However, vanilla AE models often suffer from overgeneralization, reconstructing anomalies without significant errors, resulting in many false negatives. To address this issue, this paper proposes a novel AE called Latent AE, which incorporates a shallow AE into the latent space. The Latent AE model utilizes Cramér's statistic-based feature selection technique and a transformed CAN payload data structure to enhance its efficiency. The proposed ensemble IDS enhances attack detection capabilities by leveraging the best capabilities of independent GRU and Latent AE models, while mitigating the weaknesses associated with each individual model. The evaluation of the IDS on two public datasets, encompassing 13 different attacks, including sophisticated masquerade attacks, demonstrates its superiority over baseline models with near real-time detection latency of 25ms

    Keep the moving vehicle secure: context-aware intrusion detection system for in-vehicle CAN bus security.

    Get PDF
    The growth of information technologies has driven the development of the transportation sector, including connected and autonomous vehicles. Due to its communication capabilities, the controller area network (CAN) is the most widely used in-vehicle communication protocol. However, CAN lacks suitable security mechanisms such as message authentication and encryption. This makes the CAN bus vulnerable to numerous cyberattacks. Not only are these attacks a threat to information security and privacy, but they can also directly affect the safety of drivers, passengers and the surrounding environment of the moving vehicles. This paper presents CAN-CID, a context-aware intrusion detection system (IDS) to detect cyberattacks on the CAN bus, which would be suitable for deployment in automobiles, including military vehicles, passenger cars and commercial vehicles, and other CAN-based applications such as aerospace, industrial automation and medical equipment. CAN-CID is an ensemble model of a gated recurrent unit (GRU) network and a time-based model. A GRU algorithm works by learning to predict the centre ID of a CAN ID sequence, and ID-based probabilistic thresholds are used to identify anomalous IDs, whereas the time-based model identifies anomalous IDs using time-based thresholds. The number of anomalies compared to the total number of IDs over an observation window is used to classify the window status as anomalous or benign. The proposed model uses only benign data for training and threshold estimation, avoiding the need to collect realistic attack data to train the algorithm. The performance of the CAN-CID model was tested against three datasets over a range of 16 attacks, including fabrication and more sophisticated masquerade attacks. The CAN-CID model achieved an F1-Score of over 99% for 13 of those attacks and outperformed benchmark models from the literature for all attacks, with near real-time detection latency

    AI-based intrusion detection systems for in-vehicle networks: a survey.

    Get PDF
    The Controller Area Network (CAN) is the most widely used in-vehicle communication protocol, which still lacks the implementation of suitable security mechanisms such as message authentication and encryption. This makes the CAN bus vulnerable to numerous cyber attacks. Various Intrusion Detection Systems (IDSs) have been developed to detect these attacks. However, the high generalization capabilities of Artificial Intelligence (AI) make AI-based IDS an excellent countermeasure against automotive cyber attacks. This article surveys AI-based in-vehicle IDS from 2016 to 2022 (August) with a novel taxonomy. It reviews the detection techniques, attack types, features, and benchmark datasets. Furthermore, the article discusses the security of AI models, necessary steps to develop AI-based IDSs in the CAN bus, identifies the limitations of existing proposals, and gives recommendations for future research directions

    AI-powered vulnerability detection for secure source code development.

    No full text
    Vulnerable source code in software applications is causing paramount reliability and security issues. Software security principles should be integrated to reduce these issues at the early stages of the development lifecycle. Artificial Intelligence (AI) could be applied to detect vulnerabilities in source code. In this research, a Machine Learning (ML) based method is proposed to detect source code vulnerabilities in C/C++ applications. Furthermore, Explainable AI (XAI) was applied to support developers in identifying vulnerable source code tokens and understanding their causes. The proposed model can detect whether the code is vulnerable or not in binary classification with 0.96 F1-Score. In case of vulnerability type detection, a multi-class classification based on CWE-ID, the model achieved 0.85 F1-Score. Several ML classifiers were tested, and the Random Forest (RF) and Extreme Gradient Boosting (XGB) performed well in binary and multi-class approaches respectively. Since the model is trained on a dataset containing actual source codes, the model is highly generalizable
    corecore